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Abstract

A numerical stability analysis has been formulated to accompany the already developed explicit high-order finite

difference analysis of rotationally symmetric shells subjected to time-dependent impulsive loadings. This already developed

analysis utilizes a constant nodal point spacing for the spatial finite difference mesh, with the governing field differential

equations formulated in terms of the transverse, meridional, and circumferential displacements as the fundamental

variables. The remaining quantities which enter into the natural boundary conditions at each edge of the shell are

incorporated into the complete system of equations by defining those quantities at each boundary in terms of the

displacements. Surface loadings and inertia forces in each of the three displacement directions of the shell have been

considered in the governing equations. Ordinary finite difference representations are used for the time derivatives. All

loadings and dependent variables in the circumferential direction of the shell are expressed in Fourier series expansions.

The complete system of equations is solved implicitly for the first time increment, while explicit relations are used to

determine the three primary displacements within the boundary edges of the shell for the second and succeeding time

increments. Separate implicit solutions at each boundary are then used to determine the remaining unspecified primary

variables on and outside the boundaries. Subsequently, the remaining primary variables within the boundary edges of the

shell and all secondary variables are determined explicitly. Numerical stability (or instability) of numerical solutions for

given choices of spatial and time increments is determined by evaluation of the eigenvalues of the explicit coefficient matrix

and comparing the maximum eigenvalue with the requirements of a stability criterion developed before by the author.

Solutions for typical shells and loadings together with results of stability analyses have been included, and comparisons of

the stability requirements and solutions with the requirements and solutions based upon ordinary spatial finite difference

representations are included.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In the absence of closed-form static or dynamic solutions for the general shell, several investigators have
obtained solutions for both the static problem and the dynamic problem in which the shell is subjected to time-
dependent distributed surface and thermal loadings with arbitrary time-dependent boundary conditions by
numerical methods. Included in these investigators were Penny [1], who solved the symmetric bending problem
of a general shell in 1961 by finite differences; Radkowski et al. [2], who solved the axisymmetric static
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

Cij column vector on right-hand side of
Eq. (28)

E Young’s modulus
g acceleration constant
G coefficient matrix in equations for

explicit solution for displacement vari-
ables wn, ufn, and uyn

h thickness of the shell
mf, my moments of the mechanical surface

loads
Mf, My, Myf moment stress resultants

M0
fn Mfn� 10�6

n integer, designating the nth Fourier
component

N, Q effective shear resultants

N0
n;Q

0
n Nn� 10�6 and Qn� 10�6

Nf, Ny, Nyf membrane stress resultants

N0
fn;M

0
fn Nfn� 10�6 and Mfn� 10�6

p, pf, py components of the mechanical surface
loads

Qf, Qy transverse shear resultants
r distance of point on the middle surface

of the shell from the axis of symmetry
Rf, Ry principal radii of curvature of the

middle surface of the shell

s distance from an arbitrary origin along
the meridian of the shell in the positive
direction of f

Ds spacing between node points in the
meridional finite difference mesh

t independent time variable
Dt increment of the time variable t

Dt(MAX) trial value of Dt for which matrix G

maximum eigenvalue is less than but
nearly equal to 2

w, uf, uy components of displacement of the
middle surface of the shell

_w; _uf; _uy velocities in displacement directions w,
uf, and uy, respectively

€w; €uf; €uy accelerations in the displacement direc-
tions w, uf, and uy, respectively

z distance of point on the middle surface
of the shell measured from the origin
along the axis of symmetry

by, bf angles of rotation of the normal to the
middle surface of the shell

g weight of shell material per unit volume
y, f, r coordinates of any point of the shell
l eigenvalue of the coefficient matrix G

lj jth eigenvalue of the coefficient matrix
G

l(MAX) maximum eigenvalue of the coefficient
matrix G

n Poisson’s ratio
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problem in 1962 by finite differences; and Budiansky and Radkowski [3], who used finite difference methods to
solve the unsymmetrical static bending problem in 1963.

In 1964, Kalnins [4] also solved the static problem of rotationally symmetric shells of revolution subjected to
both symmetrical and nonsymmetrical loading. Beginning with the equations of the linear classical bending
theory of shells, in which the thermal effects were included, he derived a system of eight first-order ordinary
differential equations which were solved by direct numerical integration over preselected segments of the shell.
The resulting system of matrix equations obtained by providing continuity of the fundamental variables at the
segmental division points was solved by Gaussian elimination.

The solution for the free vibration characteristics of rotationally symmetric shells with meridional
variations in the shell parameters by means of his multisegment direct numerical integration approach was
also obtained by Kalnins [5] in 1964. Subsequently, in 1965, the solution for the response of an arbitrary
shell subjected to time-dependent surface loadings was obtained by Kraus and Kalnins [6] by means of the
classical method of spectral representation. The solution was expanded in terms of the modes of free vibration
as determined previously by Kalnins [5], and the orthogonality of the normal modes was proved for an
arbitrary shell.

In 1965, a finite element technique for the analysis of shells of revolution under both axisymmetric and
asymmetric static loading was developed by Percy et al. [7] by idealizing the shell as a series of conical frusta.

In 1966, Smith [8] published his development of procedures for the static analysis of axisymmetric shell
structures under axisymmetric loading by reduction of the shell to a series of ring sections. In particular, the
method may be used to analyze shells with irregular meridional geometry. Explicit expressions for influence
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coefficients for each ring element are derived. Solutions are obtained by the flexibility method of indeterminate
structural analysis.

In 1966, Klein [9] also published an article describing a matrix displacement finite element approach to the
linear elastic analysis of multilayer shells of revolution under axisymmetric and asymmetric dynamic and
impulsive loadings. The method of solution treats the shell as a series of conical frusta joined at nodal circles.
Solutions are stated in the article to be numerically stable for all values of the finite difference time increment
used in the step-by-step solution.

The solution for the dynamic response of a circular cylindrical shell with constant geometric and material
properties and under isothermal conditions was also obtained in 1966 by Johnson and Greif [10] for the case of
linear elastic shell response. These authors derived the field equations in the form of four second-order partial
differential equations with respect to the meridional direction of the cylinder and obtained solutions for each
Fourier harmonic by employing finite difference representations for both temporal and meridional coordinate
derivatives. They obtained and compared solutions by both the implicit and the explicit methods. The
numerical stability criterion for the explicit solution method given by Eq. (5.3) of Ref. [10] is empirical. It
cannot therefore be assured that numerical stability, as determined by the criterion of Eq. (5.3), actually exists.

Subsequently, Smith [11,12] published reports in which he presented numerical procedures for determining
the dynamic response of rotationally symmetric open-ended thin shells of revolution under time-dependent
distributed impulsive and thermal loadings. Inertia forces were considered only in directions normal to the
middle surface and along the meridians of the shell. The field equations were derived in the form of eight first-
order partial differential equations with respect to the meridional coordinate of the shell, and the solution for
each Fourier harmonic was obtained by employing low-order finite difference representations for al1 time and
spatial derivatives. The complete system of equations was solved implicitly for the first time increment, while
explicit relations were used to obtain displacements normal to the middle surface and along the meridians of
the shell with the exception of quantities on and in the near vicinity of each boundary for the second and later
time increments. The remaining six primary variables were then determined implicitly, while all secondary
variables were subsequently found explicitly. Numerical stability (or instability) for typical shell example
solutions was judged by the behavior of the solutions. No mathematical criterion for numerical stability of
solutions was developed for these reports.

In 1973, Smith [13] published a report in which he presented numerical procedures for determining the
dynamic response of rotationally symmetric open-ended thin shells of revolution under time-dependent
surface and thermal loadings utilizing a higher-order finite difference representation of spatial derivatives than
that used in Refs. [11,12]. The field equations in differential equation form were represented as in Refs. [11,12]
with the exception that both surface loadings and inertia forces were considered to be acting in each of the
three coordinate directions of the shell. As noted in the referenced report, initial attempts to obtain explicit
solutions for the second and succeeding time increments resulted in the development of oscillatory instabilities
in the numerical solutions for a considerable range of values of both spatial and time increments, including
choices of impractically small values of the time increment, for all typical examples solved. Consequently, for
the referenced report, the explicit solutions initially desired were abandoned in favor of a stable implicit
solution to the complete system of equations for all time increments.

In 1975, Radwan and Genin [14] published their development of the equations for the determination of the
nonlinear response of thin elastic shells of arbitrary geometry under either static or dynamic loading through
the use of assumed, known, or calculated mode shape functions. The geometric nonlinearities were considered
by employing the strain–displacement relations of the Sanders–Koiter nonlinear shell theory. The mode shape
functions must satisfy the geometric boundary conditions of the shell. Their introduction into the system of
governing equations leads to a system of ordinary differential equations for the generalized time coordinates.
These ordinary differential equations in the time coordinates are coupled through the nonlinear terms in the
equations and may for the general case be solved numerically.

In 1977, Smith [15,16] published reports in which numerical procedures were given for determining the
dynamic response of rotationally symmetric open-ended thin shells of revolution under continuous time-
dependent distributed surface and thermal loadings by use of both a high-order finite difference representation
of the spatial derivatives and explicit relationships for the dependent variables for the second and succeeding
time increments. In those reports, stable solutions were found by trial for a wide range of practical values of
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both spatial and time increments by formulating the system of governing equations in terms of the transverse,
meridional, and circumferential displacements only as the dependent variables in lieu of the formulation in
Ref. [13], in which eight first-order differential equations with four generalized forces and four generalized
displacements as the dependent variables were utilized. No mathematical criterion for numerical stability
(or instability) of solutions was included in this development.

In 1983, Chang et al. [17] published their development of procedures for the linear dynamic analysis of
rotationally symmetric shells using finite elements and modal expansion. Doubly curved axisymmetric shell
finite elements with the loadings and displacements expanded in Fourier series in the circumferential direction
of the shell and with the requisite number of frequencies and mode shapes for the meridional displacements for
each Fourier number were used in the formulation of the system of equations.

In 1983, Smith [18,19] presented numerical formulations for determining both static and dynamic solutions
for open-ended rotationally symmetric thin shells of revolution subjected to distributed loadings which may be
discontinuous. It was shown therein that by formulating the governing system of equations in terms of the
transverse, meridional, and circumferential displacements as the dependent variables and by using ordinary
finite difference representations based upon a constant nodal point spacing for the derivatives in the system of
equations, correct and convergent solutions are obtained without the need to segment the shell at points of
discontinuous loadings. Since no mathematical criterion for numerical stability (or instability) of solutions was
included in the development, values of the time increment for given values of the spatial increment to obtain
stable solutions were determined by trial.

In 1991, Smith [20,21] completed development of procedures for determining the total shell response of any
rotationally symmetric general shell under time-dependent (or static) surface loadings by the modal
superposition method, which may be used for linearly elastic systems for which all forces applied to the
structure vary with time in the same manner. The method may also be used for forces which do not vary with
time in the same manner by superposition of the separate solutions for the individual time-dependent forces,
but the detailed development for combining these separate solutions is not given in Refs. [20,21]. The solutions
treated there are accomplished by first determining the free vibration characteristics of the shell (that is, the
frequencies and mode shapes) through the use of influence coefficients for the discretized shell. These influence
coefficients are evaluated by the finite difference equations for a constant nodal point spacing already
developed for discontinuous distributed loadings in Ref. [18]. Subsequently, the time-dependent solution is
expanded in terms of the modes of free vibration of the shell to obtain the total shell response as a summation
of the several modal contributions. The surface loadings considered are the loadings p normal to the middle
surface of the shell, the loadings pf along the meridian of the shell, and the loadings py applied in the
circumferential direction of the shell. To reduce the number of degrees of freedom of the discretized shell and
thus to simplify the analysis, rotary inertia and the relatively small moments mf and my due to the loadings pf
and py, respectively, were neglected in Ref. [20]. Thermal loadings were also not considered.

In 1994, Smith [22] published a second report in which numerical procedures were demonstrated for
determining the dynamic response of rotationally symmetric open-ended thin shells of revolution under
continuous time-dependent distributed surface and thermal loadings by use of both a high-order finite
difference representation of the spatial derivatives and explicit expressions for the displacement variables
within the boundary edges of the shell for the second and succeeding time increments. Ref. [22] constitutes a
revision to Ref. [15] which involved incorporation of the equilibrium equations at the shell boundaries and
which resulted in stable solutions determined by trial for either free, partially restrained, or fully restrained
boundaries by use of the formulation and computer program in Ref. [22]. The spatial finite difference mesh
used at the shell boundaries for Ref. [22] was also altered from that used in Ref. [15]. Additionally, for
Ref. [22], the finite difference representations for the derivatives on the boundaries were altered from those
used in Ref. [15] to provide a consistent order of truncation error for all derivatives. No mathematical criterion
for numerical stability (or instability) of solutions was included in the development of Ref. [22].

In 1998, Smith [23,24] published his development based on the formulation of the three governing
differential equations in terms of the transverse, meridional, and circumferential displacements as the
fundamental variables in the field equations. The system of equations is converted to a system of ordinary
spatial finite difference equations for which a variable nodal point spacing may be used together with an
ordinary finite difference representation for the time derivatives. Explicit relations are obtained for the
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displacements within the boundary edges of the shell for the second and succeeding time steps of computation.
The references contain the development and implementation of a numerical stability (or instability) criterion
based upon an eigenvalue analysis of the explicit coefficient matrices for any selected spatial finite difference
mesh and time step increment. The eigenvalues and eigenvectors of the explicit coefficient matrices are found
by use of an accompanying computer program subroutine EIGNCX given and described by Sellers [25].

In 2001, Smith [26] conducted a study of the effects of matrix size, the number of digits carried in the
numerical calculations, and the well-conditioning (or ill-conditioning) of the matrix on the accuracy of the
determined eigenvalues and eigenvectors of coefficient matrices by the subroutine EIGNCX.

In 2002, Smith [27] published the results of an extensive investigation which included the development
and implementation of an eigenvalue analysis of explicit coefficient matrices to determine numerical stability
(or instability) of the solution for given choices of time and spatial increments for the formulation of the shell
equations based on the use of eight first-order differential equations as the field equations. It was concluded
from this investigation [27] that no combination of time and spatial increments can be found for which explicit
dynamic solutions are numerically stable when the finite difference equations are based upon eight first-order
differential equations as the field equations and explicit relations are used for all eight fundamental variables
or when explicit relations are used for the fundamental variables wn, ufn, and bfn only as in Refs. [11,12].

In 2004, Smith [28] incorporated into the development of Ref. [22] provision to determine by an eigenvalue
analysis of the explicit coefficient matrices stability (or instability) of numerical calculations for given choices
of time and spatial increments. The formulation of Ref. [22] is based upon the three displacements wn, ufn, and
uyn as the fundamental variables in the field equations. Numerical solutions will be stable for this formulation
if the maximum spectral radius for the coefficient matrices is less than or equal to 2. It is noted here also that
the formulation of Ref. [28] is based upon the use of a constant nodal point spacing along the meridian of the
shell, while the development of Ref. [23] provides for the use of any specified variable nodal point spacing
along the shell meridian. Another significant difference is that the development of Ref. [28] uses high-order
spatial finite difference representations, while the formulation of Ref. [23] is based upon the use of ordinary
spatial finite difference representations.

It may be beneficial to indicate here in summary those references for which numerical stability (or
instability) of solutions lacks a mathematical criterion and those references for which a mathematical criterion
has been developed and included in the reports. No mathematical criterion for stability (or instability) has
been included in Refs. [11,12,15,16,18,19,22], while a mathematical criterion for stability (or instability) of
solutions based upon an eigenvalue analysis of the explicit coefficient matrices has been included for Refs.
[23,24,27,28].

It has been shown in Refs. [23,24,28] that, with the governing equations formulated in terms of the
transverse, meridional, and circumferential displacements as the fundamental variables and with numerical
solutions found explicitly, combinations of time and spatial increments exist which result in numerically stable
solutions and other combinations exist for which solutions are numerically unstable. With the use of ordinary
spatial finite difference representations, the criterion for numerical stability (or instability) of solutions is given
in Refs. [23,24]. The criterion for numerical stability (or instability) of solutions with a high-order finite
difference representation of spatial derivatives is given in Ref. [28].

The purpose of this article is to present the development of Ref. [28] and to show comparisons of the
numerical stability requirements and solutions as obtained by the formulation of Ref. [23] using ordinary
spatial derivative representations and the stability requirements and solutions as found by the high-order
spatial derivative representations of Ref. [28] for typical shells.

2. Governing differential equations

The development of the system of governing differential equations is based upon the linear classical theory
of shells as given by Reissner [29]. The three governing differential equations are given in terms of the
transverse displacement w, the meridional displacement uf, and the circumferential displacement uy as the
unknown variables in the field equations governing the response of the shell. The remaining quantities bf, Q,
Nf, N, and Mf, which enter into the natural boundary conditions at each rotationally symmetric edge of the
shell are incorporated into the complete system of equations by defining these quantities at each boundary in
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terms of the displacements w, uf, and uy. Four time-dependent boundary conditions may be prescribed at each
boundary edge of the shell. The quantities w, uf, uy, bf, Q, Nf, N, and Mf constitute the primary variables in
the system of equations. The quantities by, Ny, My, Qf, Nyf, Myf, and Qy constitute the secondary variables,
which are found in terms of the displacements w, uf, and uy after solution for those displacements.

In the development of the equations, surface loadings and inertia forces in each of the displacement
directions w, uf, and uy will be considered. The forces of rotary inertia will be neglected. The thickness h of the
shell may vary between the shell boundaries and continuity of h and its derivatives through the second order is
assumed. The assumption is made that r/Rf51 and that r/Ry51, where r is measured from the middle
surface of the shell on a normal to the middle surface and is positive outward. Thus, it is assumed that
Nyf ¼ Nfy, and Myf ¼Mfy. Hence, there are only five useful equations of equilibrium for a typical shell
element.

All loadings and dependent variables in the circumferential direction of the shell are expressed as Fourier
series expansions. Numerical solutions are obtained for each Fourier component n by use of ordinary finite
difference representations for the time derivatives and high-order finite difference representations for the
spatial derivatives based upon a constant nodal point spacing.

The complete system of equations is solved implicitly for the first time increment of the solution. Initial
displacements and velocities are incorporated in the direction of the displacements wn, ufn, and uyn for the first
time step of the solution. Explicit solutions are used to determine the three primary displacements wn, ufn, and
uyn within the boundary edges of the shell for the second and later time steps, while separate implicit solutions
at each boundary are used to determine the remaining unspecified primary variables on and outside the
boundaries.
Z

Y

X

r

Axis of symmetry

Boundary
of shell

Boundary
of shell

Typical
shell
element

p,w

Shell middle
surface

z 0

z N ds

R�

p�,u�

p�,u�
R�

d�

�

d�

Fig. 1. Typical shell of revolution.
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Fig. 2. Shell element membrane and shear forces.
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The geometry and coordinate system for the shell’s middle surface are shown in Fig. 1, shell element
membrane and shear forces are given in Fig. 2, and shell element bending and twisting moments are depicted
in Fig. 3. The system of differential equations described above may be found as Eqs. (1–15) in Ref. [24].
The complete development for the total system of equations involved with the subject of this article is given in
Ref. [28].
3. Finite difference representation of spatial derivatives

For the finite difference representation of spatial derivatives, a high-order representation which neglects
terms in the Taylor-series expansions for the derivatives containing (Ds)4 and higher powers of Ds is used. In
general, a central finite difference representation is used. The only exceptions (for which the expressions are
unbalanced about the pivotal points) are for third and fourth derivatives of wn at the boundaries s0 and sN;
third derivatives of ufn at s0, s1, sN�1, and sN; first and second derivatives of ufn at s0 and sN; and first and
second derivatives of uyn at the boundaries s0 and sN.

The derivatives of w are represented as

w;sðsÞ ¼
1

Ds

1

12
wðs� 2DsÞ �

2

3
wðs� DsÞ þ

2

3
wðsþ DsÞ �

1

12
wðsþ 2DsÞ

� �
,

ðs0pspsNÞ, ð1Þ
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w;ssðsÞ ¼
1

ðDsÞ2
�

1

12
wðs� 2DsÞ þ

4

3
wðs� DsÞ �

5

2
wðsÞ þ

4

3
wðsþ DsÞ �

1

12
wðsþ 2DsÞ

� �
,

ðs0pspsN Þ, ð2Þ

w;sssðsÞ ¼
1

ðDsÞ3
1

8
wðs� 3DsÞ � wðs� 2DsÞ þ

13

8
wðs� DsÞ

�
�
13

8
wðsþ DsÞ þ wðsþ 2DsÞ �

1

8
wðsþ 3DsÞ

�
,

ðs1pspsN�1Þ, ð3Þ

w;ssssðsÞ ¼
1

ðDsÞ4
�
1

6
wðs� 3DsÞ þ 2wðs� 2DsÞ

�
�

13

2
wðs� DsÞ þ

28

3
wðsÞ �

13

2
wðsþ DsÞ

þ2wðsþ 2DsÞ �
1

6
wðsþ 3DsÞ

�
ðs1pspsN�1Þ, ð4Þ

w;sssðs0Þ ¼
1

ðDsÞ3
�
1

8
wðs�2Þ � wðs�1Þ þ

35

8
wðs0Þ � 6wðs1Þ þ

29

8
wðs2Þ � wðs3Þ þ

1

8
wðs4Þ

� �
, (5)

w;sssðsN Þ ¼
1

ðDsÞ3
�
1

8
wðsN�4Þþ

�
wðsN�3Þ �

29

8
wðsN�2Þ þ 6wðsN�1Þ�

35

8
wðsNÞ þ wðsNþ1Þ þ

1

8
wðsNþ2Þ

�
, (6)
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w;ssssðs0Þ ¼
1

ðDsÞ4
2

3
w s�2ð Þ �

11

6
w s�1ð Þ þ

31

6
wðs1Þ �

22

3
wðs2Þ þ

9

2
wðs3Þ �

4

3
wðs4Þ þ

1

6
wðs5Þ

� �
, (7)

w;ssssðsN Þ ¼
1

ðDsÞ4
1

6
wðsN�5Þ �

4

3
wðsN�4Þ þ

9

2
wðsN�3Þ �

22

3
wðsN�2Þ

�

þ
31

6
wðsN�1Þ �

11

6
wðsNþ1Þ þ

2

3
wðsNþ2Þ

�
. ð8Þ

The derivatives of uf are given as

uf;sðsÞ ¼
1

Ds

1

12
ufðs� 2DsÞ �

2

3
ufðs� DsÞ þ

2

3
ufðsþ DsÞ �

1

12
ufðsþ 2DsÞ

� �
ðs1pspsN�1Þ, (9)

uf;ssðsÞ ¼
1

ðDsÞ2
�

1

12
ufðs� 2DsÞ þ

4

3
ufðs� DsÞ �

5

2
ufðsÞ þ

4

3
ufðsþ DsÞ �

1

12
ufðsþ 2DsÞ

� �
,

ðs1pspsN�1Þ, ð10Þ

uf;sssðsÞ ¼
1

ðDsÞ3
1

8
ufðs� 3DsÞ � ufðs� 2DsÞ þ

13

8
ufðs� DsÞ

�

�
13

8
ufðsþ DsÞ þ ufðsþ 2DsÞ �

1

8
ufðsþ 3DsÞ

�
ðs2pspsN�2Þ, ð11Þ

uf;sðs0Þ ¼
1

Ds
�
1

4
uf s�1ð Þ �

5

6
ufðs0Þ þ

3

2
ufðs1Þ �

1

2
ufðs2Þ þ

1

12
ufðs3Þ

� �
, (12)

uf;sðsN Þ ¼
1

Ds
�

1

12
ufðsN�3Þ þ

1

2
ufðsN�2Þ �

3

2
ufðsN�1Þ þ

5

6
ufðsN Þ þ

1

4
ufðsNþ1Þ

� �
, (13)

uf;ssðs0Þ ¼
1

ðDsÞ2
5

6
uf s�1ð Þ �

5

4
ufðs0Þ �

1

3
ufðs1Þ þ

7

6
ufðs2Þ �

1

2
ufðs3Þ þ

1

12
ufðs4Þ

� �
, (14)

uf;ssðsNÞ ¼
1

ðDsÞ2
1

12
ufðsN�4Þ �

1

2
ufðsN�3Þ þ

7

6
ufðsN�2Þ �

1

3
ufðsN�1Þ �

5

4
ufðsN Þ þ

5

6
ufðsNþ1Þ

� �
, (15)

uf;sssðs0Þ ¼
1

ðDsÞ3
�
15

8
ufðs�1Þ þ 7ufðs0Þ �

83

8
ufðs1Þ þ 8ufðs2Þ �

29

8
ufðs3Þ þ ufðs4Þ �

1

4
ufðs5Þ

� �
, (16)

uf;sssðsN Þ ¼
1

ðDsÞ3
1

8
ufðsN�5Þ � ufðsN�4Þ þ

29

8
ufðsN�3Þ � 8ufðsN�2Þ þ

83

8
ufðsN�1Þ � 7ufðsN Þ þ

15

8
ufðsNþ1Þ

� �
,

(17)

uf;sssðs1Þ ¼
1

ðDsÞ3
�
1

8
ufðs�1Þ � ufðs0Þ þ

35

8
ufðs1Þ � 6ufðs2Þ þ

29

8
ufðs3Þ � ufðs4Þ þ

1

8
ufðs5Þ

� �
, (18)

uf;sssðsN�1Þ ¼
1

ðDsÞ3
�
1

8
ufðsN�5Þ þ ufðsN�4Þ �

29

8
ufðsN�3Þ þ 6ufðsN�2Þ �

35

8
ufðsN�1Þ þ ufðsN Þ þ

1

8
ufðsNþ1Þ

� �
.

(19)

The derivatives of the variable uy are given by

uy;sðsÞ ¼
1

Ds

1

12
uyðs� 2DsÞ �

2

3
uyðs� DsÞ þ

2

3
uyðsþ DsÞ �

1

12
uyðsþ 2DsÞ

� �
ðs1pspsN�1Þ, (20)
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uy;ssðsÞ ¼
1

ðDsÞ2
�

1

12
uyðs� 2DsÞ þ

4

3
uyðs� DsÞ �

5

2
uyðsÞ þ

4

3
uyðsþ DsÞ �

1

12
uyðsþ 2DsÞ

� �
,

ðs1pspsN�1Þ, ð21Þ

uy;sðs0Þ ¼
1

Ds
�
1

4
uyðs�1Þ �

5

6
uyðs0Þ þ

3

2
uyðs1Þ �

1

2
uyðs2Þ þ

1

12
uyðs3Þ

� �
, (22)

uy;sðsN Þ ¼
1

Ds
�

1

12
uyðsN�3Þ þ

1

2
uyðsN�2Þ �

3

2
uyðsN�1Þ þ

5

6
uyðsN Þ þ

1

4
uyðsNþ1Þ

� �
, (23)

uy;ssðs0Þ ¼
1

ðDsÞ2
5

6
uyðs�1Þ �

5

4
uyðs0Þ �

1

3
uyðs1Þ þ

7

6
uyðs2Þ �

1

2
uyðs3Þ þ

1

2
uyðs4Þ

� �
, (24)

uy;ssðsN Þ ¼
1

ðDsÞ2
1

12
uyðsN�4Þ �

1

2
uyðsN�3Þ þ

7

6
uyðsN�2Þ �

1

3
uyðsN�1Þ �

5

4
uyðsN Þ þ

5

6
uyðsNþ1Þ

� �
. (25)

Eqs. (1)–(25), with the Fourier components of the variables in lieu of the variables as written, will be
substituted as appropriate into the governing differential equations described in Section 2 of this article to
make the conversion to a system of equations in spatial finite difference form.

4. Governing finite difference equations

The system of equations to be solved for each Fourier component of loading consists of Eqs. (8) of Ref. [24]
applicable on the interval s0pspsN and Eqs. (9) of Ref. [24] applicable at each boundary together with four
additional equations prescribing four of the quantities wn, ufn, uyn, bfn, Qn, Nfn, Nn, and Mfn at each
boundary and the equations defining the initial conditions. When this system of equations has been solved, the
remaining unknown variables of the primary variables bfn, Qn, Nfn, Nn, and Mfn may be found from Eqs. (9)
of Ref. [24]. The secondary variables byn, Nyn, Myn, Qfn, Nyfn, Myfn, and Qyn may be found on the interval
s0pspsN from the appropriate equations given in Ref. [28].

To solve the above system of equations, all derivatives in the equations are replaced by their finite difference
equivalents to obtain a system of algebraic equations which may be applied at successive increments of the
time variable. The node point layout for the spatial finite difference mesh is shown in Fig. 4, where N defines
the number of equal spatial increments Ds between the boundaries s0 and sN. The number of equations to be
solved at each time increment of the solution process is constituted by 3(N+1) algebraic equations in the
coordinate s by writing Eqs. (8) of Ref. [24] together with Eqs. (12) of Ref. [24] at each of the N+1 meridional
node points on and between the boundaries s0 and sN; ten equations by writing Eqs. (9) of Ref. [24] at each of
the boundaries s0 and sN; and eight equations by prescribing four of the eight quantities wn, ufn, uyn, bfn, Qn,
Nfn, Nn, and Mfn at each of the boundaries s0 and sN; thus constituting a system of 3N+21 equations. The
spatial derivatives in this system of 3N+21 finite difference equations are defined by Eqs. (1)–(25) of this
article. The time derivatives in the system of differential equations described previously have been converted to
finite difference form for the first time increment by use of Eqs. (13) of Ref. [24] for the accelerations
€wnðs; t1Þ; €ufnðs; t1Þ, and €uynðs; t1Þ on the spatial interval s0pspsN; thus leading to an implicit solution to the
system of 3N+21 equations for the first time increment.

The time derivatives for the second and subsequent time increments have been represented as given by Eqs.
(14) of Ref. [24] on the spatial interval s1pspsN. This leads to an explicit solution for the variables wn(s, t),
ufn(s, t), and uyn(s, t) on the interval s1pspsN�1.

Following the explicit solution for the displacement variables on the interval s1pspsN�1, 12 variables on
and adjacent to each boundary remain to be determined separately and implicitly at each boundary. For these
separate implicit solutions, the accelerations €wnðs0; tÞ; €ufnðs0; tÞ, €uynðs0; tÞ; €wnðsN ; tÞ; €ufnðsN ; tÞ, and €uynðsN ; tÞ have
been represented as given by Eqs. (15) of Ref. [24].

In order to produce better-conditioned matrices in the system of 3N+21 finite difference equations, the
force variables Nfn, Mfn, Nn, and Qn have been transformed to the force variables N0

fn;M
0
fn;N

0
n, and Q0

n in
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Fig. 4. Node point layout for discretized shell. N ¼ number of equal spaces between boundaries S0 and SN.
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accordance with Eqs. (24) of Ref. [24]. The accompanying force variable coefficients have been modified
accordingly as given in Eqs. (25) of Ref. [24].

The finite difference equations for the system of 3N+21 equations for both the time t1 and the times
tXt0+2Dt together with the computer program for obtaining the solutions may be found in Ref. [28]. This
system of equations may be used to obtain solutions for static loadings by setting Dt equal to infinity in the
input data and solving the system of equations for only the first time increment.

5. Selection of meridional and time increments

To obtain solutions to the system of finite difference equations described hereinbefore, choices must be
made for the spatial increment Ds and the time increment Dt. For cases of static solutions, stability of
numerical solutions is divorced from consideration of the choice of the meridional increment Ds. It is therefore
only necessary to choose the meridional increment Ds to minimize truncation and roundoff errors. Roundoff
errors will be significant as Ds approaches zero, and truncation errors will become significant as Ds is increased
to values sufficiently large. Upon the basis of static solutions obtained for typical shells, it appears that static
solutions obtained by use of the high-order spatial finite difference representations used in this article are
sufficiently accurate if Ds is chosen to be as high as on the order of 4–6 times the thickness h of the shell [28].

For cases of dynamic solutions, it is expected that for any given choice of Ds some value of Dt(MAX) can be
found for which DtpDt(MAX) will yield numerically stable solutions and for which Dt4Dt(MAX) will
generate numerically unstable solutions. The value of Dt(MAX) will be determined by evaluating the
eigenvalues of the coefficient matrix G of the displacements wn(s,t�Dt), ufn(s,t�Dt), and uyn(s,t�Dt) in the
explicit matrix equation for wn(s,t), ufn(s,t), and uyn(s,t) on the interval s1pspsN�1 for trial values of Dt.
The rather lengthy explicit equations from which the elements gij of matrix G are obtained may be found in
Ref. [28]. It is noted here also that only the coefficients of the displacement values wn(s, t�Dt), ufn(s, t�Dt),
and uyn(s, t�Dt) constitute the elements gij of matrix G. An initial trial value for Dt based upon empirical
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studies given in Ref. [22] may be found from the empirical relations

Dt ¼ ð4:545Ds� 0:194Þ10�6 ð0:0625pDsp0:1250Þ, (26a)

Dt ¼ ð6:491Ds� 0:437Þ10�6 ð0:1250pDsp0:1610Þ, (26b)

Dt ¼ ð4:077Ds� 0:048Þ10�6 ð0:1610pDsp0:2500Þ, (26c)

Dt ¼ ð3:668Dsþ 0:053Þ10�6 ð0:2500pDsp0:3220Þ, (26d)

Dt ¼ ð3:981Ds� 0:047Þ10�6 ð0:3220pDsp0:5000Þ, (26e)

Dt ¼ ð3:787Dsþ 0:050Þ10�6 ð0:5000pDsp0:6440Þ, (26f)

Dt ¼ ð3:688Dsþ 0:114Þ10�6 ð0:6440pDsp0:7728Þ, (26g)

Dt ¼ ð3:835DsÞ10�6 ð0:7728pDsp0:9660Þ. (26h)

The development of the numerical stability criterion based upon the eigenvalues found for the coefficient
matrix G is given by Eqs. (28)–(46) of Ref. [24]. This criterion is seen to be that solutions based upon the
developments of this article will be numerically stable if the maximum eigenvalue of the coefficient matrix G is
less than or equal to two, i.e.,

jl MAXð Þjp2. (27)

The development of the stability criterion given by Eq. (27) as shown in Ref. [24] is directly applicable for
either the symmetric or the antisymmetric Fourier component with nX1. Separate developments for the
symmetric and antisymmetric Fourier components for n ¼ 0 result in the same stability criterion [28].

It is noted that the elements gij of matrix G are functions of Ds and Dt. However, each of the elements
gii along the diagonal of the matrix has an additive constant 2.0 for the displacement terms wn(sj, t�Dt),
ufn(sj, t�Dt), and uyn(sj, t�Dt).

For any chosen Ds, some value of Dt will be found for which jlðMAXÞj is equal to 2. Solutions will also be
stable as Dt is reduced, in which case, the elements gij off the diagonal are reduced in absolute value; and,
similarly, the elements gii on the diagonal are altered in value. As Dt approaches zero, only the elements gii

along the diagonal will be significant at a value of 2, and all eigenvalues of the matrix G will be equal to 2. As
Dt is increased beyond the value Dt for which jlðMAXÞj ¼ 2, the elements gij of matrix G will increase in value
and produce values for jlðMAXÞj42, indicating unstable solutions.

In the solution of Eq. (38) of Ref. [24] for the eigenvalues lj and eigenvectors Vj by the subroutine
EIGNCX, it is realized that there will be some numerical error dependent upon the number of digits carried in
the calculations, the degree to which the matrix G is well-conditioned (or ill-conditioned), and the dimensions
of the matrix G [26]. The accuracy of the eigenvalues and eigenvectors is expected to be diminished with
increase in size of the matrix G. To measure the accuracy of the determined eigenvalues l̄j and eigenvectors V̄ j ,
these determined quantities may be substituted into Eq. (37) of Ref. [24] to obtain

ðG � l̄jIÞV̄ j ¼ Cij , (28)

where Cij is a column vector representing the departure of each and every row of Eq. (28) from absolute zero.
The bars over lj and Vj have here been used to distinguish the calculated quantities by the subroutine
EIGNCX from the undetermined correct values which would satisfy Eq. (37) of Ref. [24] exactly, with
absolute zero on the right-hand sides of the equations to the number of digits carried in the calculations, thus
making Eq. (37) of Ref. [24] truly homogeneous.

The calculated quantities Cij in Eq. (28) will be a measure of the likely error in the determination of lj and Vj

from the subroutine EIGNCX included in Appendix B of Ref. [28]. Included in the subroutine STABIL in
Appendix B of Ref. [28] is a calculation of the right-hand side of Eq. (28) so that a measure of the error in the
calculated eigenvalues and eigenvectors may be available for evaluation.



ARTICLE IN PRESS

r
Z

zN,sN z0,s0

9.0 in.
h

r

p(�,s,t)

�

Fig. 5. Example cylindrical shell with continuous loading. The loading p(y, s, t) ¼ �1000 cos yð�p=2pypp=2Þ. The thickness h ¼ 0.25 in.

The radius r ¼ 8.0 in. The boundary conditions at s0 are w ¼ 0, uf ¼ 0, uy ¼ 0, and Mf ¼ 0. The boundary conditions at sN are w ¼ 0,

uy ¼ 0, Nf ¼ 0, and Mf ¼ 0.
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To implement the application of the above-described development to determine numerical stability limits
for the analysis of general shells, there has been included in the program in Appendix B of Ref. [28] the
subroutine EIGNCX (together with the calling subroutine STABIL), which will determine all real and
imaginary (if any) eigenvalues lj and the eigenvectors associated with the real matrix G. To demonstrate the
operation and usefulness of the subroutine EIGNCX, the computer program in Appendix B of Ref. [28] will
be utilized to determine by eigenvalue analyses the maximum time increment Dt for which investigated
solutions are found to be stable and the minimum time increments for which investigated solutions are found
to be unstable for four different nodal point spacings for the cylindrical shell and loading shown in Fig. 5.
Subsequently, the stability conditions for the parabolic shell, loading, and boundary conditions shown in
Fig. 6 will be evaluated.

For the cylindrical shell shown in Fig. 5, it is assumed that the initial conditions are zero. For the boundary
conditions, it is assumed that w, uf, Mf, and uy are zero at z0 and that w, Nf, Mf, and uy are zero at zN.
A value for E of 30� 106 pounds/in2, a value for g of 0.2835 pounds/in3, and a value for v of 0.30 are assumed.
Only the Fourier components for n ¼ 0–4 are used. Thus, although they do not enter into the analysis for
stability (or instability), the four nonzero components entering into any solution are p0 ¼ �318.0,
p1 ¼ �500.0, p2 ¼ �212.0, and p4 ¼ 42.0 pounds/in2. Shown in Table 1 are the results of our stability studies
for four different nodal point spacings.

To investigate the stability conditions for the parabolic shell and loading shown in Fig. 6, it is assumed that
the initial conditions are zero. It is assumed for the boundary conditions that w, uf, uy, and bf are zero at z0 and
that Q, Nf, N, and Mf are zero at zN. A value of 30� 106 pounds/in2 for E, a value of 0.2835pounds/in3 for g,
and a value of 0.30 for v are assumed. For the given conditions, only the equations containing the symmetric
Fourier components enter into the evaluation. Only the Fourier components for n ¼ 0–8 are used, and, although
they do not enter into the analysis for numerical stability (or instability), the nonzero loading components are
p0 ¼ �31.8, p1 ¼ �50.0, p2 ¼ �21.2, p4 ¼ 4.2, p6 ¼ �1.8, and p8 ¼ 1.0 pounds/in2. Shown in Table 2 are the
results of our stability studies for the three different nodal point spacings for the parabolic shell.

To illustrate stability study results obtained by use of the subroutine EIGNCX, the eigenvalues l(MAX)
obtained for selected finite difference meshes and values of Dt for the example cylindrical shell of Fig. 5 as
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Fig. 6. Example parabolic shell with continuous loading. The loading p(y,s,t) ¼ �100 cos yð�p=2pypp=2Þ. The radius

r ¼ 10+0.15z+0.02z2. The thickness h ¼ 0.10 in. The boundary at s0 is fixed against any displacement and the boundary at sN is free

of any restraint.

Table 1

Stability limits for example cylindrical shell for n ¼ 0, 1, 2, and 4

Mesh spacing case no. N no. of spaces between s0 and sN Ds (in) Time increment Dt (10�6 s)

Stable Unstable

1 144 0.0625 p0.095 X0.100

2 72 0.1250 p0.394 X0.396

3 36 0.2500 p1.022 X1.024

4 18 0.5000 p2.048 X2.050
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described previously in this section of this article are shown in Table 3. Shown in Table 4 are the eigenvalues
l(MAX) found for selected finite difference meshes and values of Dt for the example parabolic shell of Fig. 6
as also described earlier in this section of this article. It can be seen from Tables 3 and 4 that the eigenvalues
l(MAX) increase gradually as the Fourier number n increases from n ¼ 0 to the maximum value of n. Thus, it
is expected that stability (or instability) will be governed by the maximum value of n, which is used in the finite
difference analysis. It is not therefore expected to be necessary to determine the eigenvalues for any of the
Fourier components other than the maximum value of n used in the shell analysis.
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Table 2

Stability limits for example parabolic shell for n ¼ 0, 1, 2, 4, 6, and 8

Mesh spacing case no. N no. of spaces between s0 and sN Ds (in) Time increment Dt (10�6 s)

Stable Unstable

1 144 0.16100671 p0.640 X0.660

2 72 0.32201342 p1.300 X1.320

3 36 0.64402685 p2.620 X2.640

Table 3

Matrix G eigenvalues l(MAX) for case numbers in Table 1

Mesh spacing case no. (Table 1) n Time increment Dt (10�6 s) l (MAX) Stability condition Cij (MAX) in Eq. (28)

1 4 0.095 1.99999 Stable 0.414� 10�11

0.100 2.09033 Unstable 0.150� 10�10

2 0 0.394 1.99989 Stable 0.541� 10�12

0.396 2.00408 Unstable 0.296� 10�10

2 1 0.394 1.99992 Stable 0.270� 10�11

0.396 2.00447 Unstable 0.229� 10�10

2 2 0.394 1.99995 Stable 0.245� 10�9

0.396 2.00564 Unstable 0.793� 10�11

2 4 0.394 1.99997 Stable 0.606� 10�12

0.396 2.01034 Unstable 0.183� 10�1

3 0 1.022 1.99926 Stable 0.102� 10�11

1.024 2.00930 Unstable 0.463� 10�9

3 1 1.022 1.99948 Stable 0.131� 10�11

1.024 2.01128 Unstable 0.146� 10�14

3 2 1.022 1.99970 Stable 0.348� 10�12

1.024 2.01205 Unstable 0.165� 10�9

3 4 1.022 1.99985 Stable 0.556� 10�12

1.024 2.01517 Unstable 0.426� 10�14

4 0 2.048 1.99705 Stable 0.109� 10�13

2.050 1.99704 Stable 0.120� 10�13

4 1 2.048 1.99794 Stable 0.127� 10�12

2.050 1.99794 Stable 0.633� 10�12

4 2 2.048 1.99881 Stable 0.327� 10�12

2.050 1.99880 Stable 0.327� 10�12

4 4 2.048 1.99974 Stable 0.216� 10�9

2.050 2.00756 Unstable 0.228� 10�10
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By comparing the stability limits in Tables 1 and 2 of this article with similar results given in Tables 1 and 2
of Ref. [24] (which uses an ordinary spatial finite difference representation), it is readily seen that, for the same
constant nodal point spacing, the use of a higher-order spatial finite difference representation requires a
significantly smaller value of time increment Dt for stable solutions than that required for the ordinary spatial
finite difference representation. This result is in accordance with expectations.

The stability limits given earlier in Tables 1 and 3 are for the cylindrical shell shown in Fig. 5, while the
stability limits given in Tables 2 and 4 pertain to the parabolic shell shown in Fig. 6. These results were
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Table 4

Matrix G eigenvalues l(MAX) for case numbers in Table 2

Mesh spacing case no. (Table 2) n Time increment Dt (10�6 s) l(MAX) Stability condition Cij(MAX) in Eq. (28)

1 8 0.640 1.99999 Stable 0.276� 10�11

0.660 2.02878 Unstable 0.220� 10�14

2 0 1.300 1.99987 Stable 0.201� 10�11

1.320 2.02420 Unstable 0.245� 10�14

2 1 1.300 1.99989 Stable 0.595� 10�10

1.320 2.02456 Unstable 0.141� 10�14

2 2 1.300 1.99992 Stable 0.226� 10�11

1.320 2.02500 Unstable 0.386� 10�7

2 4 1.300 1.99996 Stable 0.521� 10�11

1.320 2.02680 Unstable 0.286� 10�14

2 6 1.300 1.99997 Stable 0.201� 10�3

1.320 2.02996 Unstable 0.800� 10�14

2 8 1.300 1.99997 Stable 0.597� 10�3

1.320 2.03472 Unstable 0.776� 10�9

3 0 2.620 1.99950 Stable 0.688� 10�12

2.640 2.01546 Unstable 0.591� 10�15

3 1 2.620 1.99955 Stable 0.125� 10�11

2.640 2.01782 Unstable 0.227� 10�9

3 2 2.620 1.99969 Stable 0.761� 10�11

2.640 2.01958 Unstable 0.149� 10�14

3 4 2.620 1.99985 Stable 0.554� 10�13

2.640 2.02683 Unstable 0.106� 10�14

3 6 2.620 1.99990 Stable 0.216� 10�13

2.640 2.03960 Unstable 0.347� 10�13

3 8 2.620 1.99990 Stable 0.145� 10�13

2.640 2.05889 Unstable 0.185� 10�9
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obtained by the use of the stability criterion given by Eq. (27). It must be clear that Eq. (27) is general and is
the criterion for numerical stability (or instability) of solutions for any set of shell parameters, such as the shell
thickness h, Young’s modulus E, Poisson’s ratio v, weight of the shell material per unit volume g, and shell
geometry together with values chosen for the time increment Dt. The effects of all of these and other
parameters are constituted in the numerical values of the elements gij of the explicit solution coefficient matrix
G, the elements of which are evaluated in terms of these parameters.

It may be of interest here to investigate the effects of changes of the above-noted parameters on the values
found for jlðMAXÞj and accordingly how it affects the choice of a time increment Dt for which solutions are
numerically stable for typical shells. To demonstrate this, the parabolic shell shown in Fig. 6 will be selected,
and an analysis will be made of the changes in Dt required to satisfy Eq. (27) due to changes in each of the
individual parameters h, E, v, g, and shell geometry for the Fourier component n ¼ 8 and N ¼ 36. It is seen
from Table 4 that, for the parameters used there and with n ¼ 8 and N ¼ 36, jlðMAXÞj ¼ 1:99990 for
Dt ¼ 2.620� 10�6 s and jlðMAXÞj ¼ 2:05889 for Dt ¼ 2.640� 10�6 s.

For the single change from h ¼ 0.10 in used for Table 4 results for n ¼ 8 and N ¼ 36 to h ¼ 0.20 in, it is
found that jlðMAXÞj ¼ 1:99982 for Dt ¼ 2.620� 10�6 s and that jlðMAXÞj ¼ 2:05889 for Dt ¼ 2.640� 10�6 s.
Thus, in this case, doubling the value of the shell thickness h does not significantly alter jlðMAXÞj and a choice
of Dt, which will result in numerically stable solutions.
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With a single change from E ¼ 30� 106 pounds/in2 used for Table 4 results to E ¼ 10� 106 pounds/in2, it is
found that, for n ¼ 8 and N ¼ 36, jlðMAXÞj ¼ 1:99990 for Dt ¼ 4.520� 10�6 s and jlðMAXÞj ¼ 2:00120 for
Dt ¼ 4.540� 10�6 s. This increase in the value of Dt for which solutions are numerically stable is in accordance
with expectations for a change only in the value of E inasmuch as a second choice of Dt is the product of the
square root of the ratio of the first value of E divided by the second value of E multiplied by the first value of
Dt. Alternatively, if the value of E is reduced, the elements gij of the matrix G exclusive of their multiplication
by (Dt)2 are reduced in value, and this leads to a larger value of Dt for which numerically stable solutions may
be found.

With the single data change from v ¼ 0.30 used for Table 4 results for n ¼ 8 and N ¼ 36 to v ¼ 0.15, the
results are jlðMAXÞj ¼ 1:99990 for Dt ¼ 2.700� 10�6 s and jlðMAXÞj ¼ 2:0287 for Dt ¼ 2.720� 10�6 s. This
increase in the value of Dt for which solutions are numerically stable with only a decrease in the value of
Poisson’s ratio v is expected inasmuch as it decreases the values of the elements gij exclusive of their
multiplication by (Dt)2 in the coefficient matrix G, thus resulting in an increased value of Dt for which
solutions are numerically stable.

With the only data change being from g ¼ 0.2835 pounds/in3 used in Table 4 results for n ¼ 8 and N ¼ 36 to
g ¼ 0.0954 pounds/in3, it is found that jlðMAXÞj ¼ 1:99990 for Dt ¼ 1.52� 10�6 s and that jlðMAXÞj ¼
2:10436 for Dt ¼ 1.54� 10�6 s. These results are predictable in advance of the eigenvalue analysis for the
changed value of g inasmuch as a second choice of Dt is the product of the square root of the ratio of the
second value of g divided by the first value of g multiplied by the first value of Dt.

To examine the effects of shell geometry on the numerical stability (or instability) requirements, the
geometry shown for the parabolic shell in Fig. 6 and for which the stability (or instability) limits for n ¼ 8 and
N ¼ 36 are shown in Table 4 will be changed to the geometry of a cylindrical shell with r ¼ 10, h ¼ 0.10,
Ds ¼ 0.6440 in for 36 node spacings, the boundary at s0 fixed against any displacement, the boundary at sN free
of any restraint, and all unnamed parameters the same as given for the parabolic shell of Fig. 6. With these
changes, it is found for n ¼ 8 and N ¼ 36 that jlðMAXÞj ¼ 1:99988 for Dt ¼ 2.600� 10�6 s and that
jlðMAXÞj ¼ 2:02567 for Dt ¼ 2.620� 10�6 s. By comparing the eigenvalue jlðMAXÞj ¼ 1:99990 for the
parabolic shell as shown in Table 4 for Dt ¼ 2.620� 10�6 s with the eigenvalue jlðMAXÞj ¼ 2:02567 for the
cylindrical shell evaluated here for the same choice of Dt ¼ 2.620� 10�6 s, it is seen that slightly smaller values
of Dt are required for the cylindrical shell than for the parabolic shell.

6. Solution results for typical shells

It is of interest to compare both static and dynamic solutions for typical shells as obtained by the use of
ordinary spatial finite difference representations for the derivatives [23,24] and as found by using high-order
spatial finite difference representations as described in this article [28]. In Refs. [23,24], terms of O[(Ds)2] and
higher have been neglected in the development of the spatial finite difference expressions, while terms of
O[(Ds)4] and higher have been neglected in the spatial representations used in this article [28]. To make these
comparisons, it will be convenient to choose both the cylindrical shell of Fig. 5 and the parabolic shell of Fig. 6
for which numerical stability requirements for dynamic solutions are given in Tables 1 and 2, respectively, for
the high-order spatial derivative representations of Section 3 of this article.

For the case of the cylindrical shell of Fig. 5, the boundary conditions, loadings, and material mechanical
properties are as given in Section 5 of this article. Solutions at y ¼ 0 for the static loading case as obtained by
using the ordinary finite difference representations of Refs. [23,24] are shown for uf(s) for Ds ¼ 0.0625, 0.1250,
0.2500, and 0.5000 in in Table 5. Solutions at y ¼ 0 for the static loading case as obtained by using the high-
order spatial derivative representations of Ref. [28] and as given in Section 3 of this article are shown for uf(s)
for the same four values of Ds in Table 6. Solutions at y ¼ 0 for the dynamic loading case as found by
using the ordinary spatial finite difference representations of Refs. [23,24] are shown in Table 7 for
uf(s, t ¼ 0.114� 10�2 s) for four different combinations of Ds and Dt as given in Table 7. Dynamic loading case
solutions at y ¼ 0 as found by using the high-order finite difference representations of Ref. [28] are shown in
Table 8 for uf(s, t ¼ 0.114� 10�2 s) for the same four different combinations of Ds and Dt as shown in Table 8.

The boundary conditions, loadings, and material mechanical properties needed for the solutions for the
parabolic shell of Fig. 6 are as given in Section 5 of this article. Solutions at y ¼ 0 for the static loading case as
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Table 5

Example cylindrical shell static solutions for uf(s) at y ¼ 0 for n ¼ 0, 1, 2, and 4 by ordinary finite difference method

s (in) uf(s) (in)

Constant nodal point spacings

Ds ¼ 0.0625 in Ds ¼ 0.1250 in Ds ¼ 0.2500 in Ds ¼ 0.5000 in

0.00 8.0075� 10�14 �3.2373� 10�15 �3.7991� 10�16 �2.7799� 10�17

1.00 5.9292� 10�5 5.9210� 10�5 5.8873� 10�5 5.7350� 10�5

2.00 2.3733� 10�4 2.3706� 10�4 2.3600� 10�4 2.3160� 10�4

3.00 4.2662� 10�4 4.2625� 10�4 4.2477� 10�4 4.1874� 10�4

4.00 5.9505� 10�4 5.9468� 10�4 5.9320� 10�4 5.8716� 10�4

5.00 7.5612� 10�4 7.5579� 10�4 7.5446� 10�4 7.4901� 10�4

6.00 9.3506� 10�4 9.3472� 10�4 9.3336� 10�4 9.2779� 10�4

7.00 1.1455� 10�3 1.1451� 10�3 1.1432� 10�3 1.1358� 10�3

8.00 1.3554� 10�3 1.3547� 10�3 1.3521� 10�3 1.3414� 10�3

9.00 1.4554� 10�3 1.4546� 10�3 1.4514� 10�3 1.4387� 10�3

Table 6

Example cylindrical shell static solutions for uf(s) at y ¼ 0 for n ¼ 0, 1, 2, and 4 by high-order finite difference method

s (in) uf (s) (in)

Constant nodal point spacings

Ds ¼ 0.0625 in Ds ¼ 0.1250 in Ds ¼ 0.2500 in Ds ¼ 0.5000 in

0.00 1.2064� 10�14 �5.2555� 10�15 �2.0244� 10�16 �2.1265� 10�17

1.00 5.9318� 10�5 5.9312� 10�5 5.9235� 10�5 5.8597� 10�5

2.00 2.3741� 10�4 2.3740� 10�4 2.3728� 10�4 2.3665� 10�4

3.00 4.2674� 10�4 4.2673� 10�4 4.2658� 10�4 4.2623� 10�4

4.00 5.9517� 10�4 5.9515� 10�4 5.9499� 10�4 5.9497� 10�4

5.00 7.5623� 10�4 7.5621� 10�4 7.5601� 10�4 7.5632� 10�4

6.00 9.3517� 10�4 9.3514� 10�4 9.3492� 10�4 9.3557� 10�4

7.00 1.1457� 10�3 1.1456� 10�3 1.1454� 10�3 1.1463� 10�3

8.00 1.3556� 10�3 1.3556� 10�3 1.3553� 10�3 1.3562� 10�3

9.00 1.4556� 10�3 1.4556� 10�3 1.4552� 10�3 1.4555� 10�3

Table 7

Example cylindrical shell dynamic solutions for uf (s, t ¼ 0.114� 10�2 s) at y ¼ 0 for n ¼ 0, 1, 2, and 4 by ordinary finite difference

method

s (in) uf (s, t ¼ 0.114� 10�2 s)

Constant nodal point spacings

Ds ¼ 0.0625 in,

Dt ¼ 0.095� 10�6 s

Ds ¼ 0.1250 in,

Dt ¼ 0.380� 10�6 s

Ds ¼ 0.2500 in,

Dt ¼ 0.760� 10�6 s

Ds ¼ 0.5000 in,

Dt ¼ 1.520� 10�6 s

0.00 0.0000 0.0000 0.0000 0.0000

1.00 3.1233� 10�4 3.1225� 10�4 3.1325� 10�4 2.8864� 10�4

2.00 7.8792� 10�4 7.8605� 10�4 7.8362� 10�4 7.3425� 10�4

3.00 1.2148� 10�3 1.2115� 10�3 1.2019� 10�3 1.1613� 10�3

4.00 1.5242� 10�3 1.5226� 10�3 1.5122� 10�3 1.4837� 10�3

5.00 1.7780� 10�3 1.7768� 10�3 1.7682� 10�3 1.7258� 10�3

6.00 2.0416� 10�3 2.0383� 10�3 2.0281� 10�3 1.9914� 10�3

7.00 2.3677� 10�3 2.3640� 10�3 2.3450� 10�3 2.3179� 10�3

8.00 2.7020� 10�3 2.6982� 10�3 2.6775� 10�3 2.6352� 10�3

9.00 2.8577� 10�3 2.8541� 10�3 2.8380� 10�3 2.7808� 10�3
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Table 8

Example cylindrical shell dynamic solutions for uf (s, t ¼ 0.114� 10�2 s) at y ¼ 0 for n ¼ 0, 1, 2, and 4 by high-order finite difference

method

s (in) uf (s, t ¼ 0.114� 10�2 s) (in)

Constant nodal point spacings

Ds ¼ 0.0625 in,

Dt ¼ 0.095� 10�6 s

Ds ¼ 0.1250 in,

Dt ¼ 0.380� 10�6 s

Ds ¼ 0.2500 in,

Dt ¼ 0.760� 10�6 s

Ds ¼ 0.5000 in,

Dt ¼ 1.520� 10�6 s

0.00 0.0000 0.0000 0.0000 0.0000

1.00 3.1263� 10�4 3.1224� 10�4 3.1040� 10�4 3.0104� 10�4

2.00 7.8815� 10�4 7.8722� 10�4 7.8338� 10�4 7.6475� 10�4

3.00 1.2149� 10�3 1.2138� 10�3 1.2091� 10�3 1.1819� 10�3

4.00 1.5288� 10�3 1.5275� 10�3 1.5211� 10�3 1.4894� 10�3

5.00 1.7780� 10�3 1.7768� 10�3 1.7719� 10�3 1.7402� 10�3

6.00 2.0425� 10�3 2.0412� 10�3 2.0352� 10�3 1.9983� 10�3

7.00 2.3684� 10�3 2.3670� 10�3 2.3604� 10�3 2.3154� 10�3

8.00 2.7023� 10�3 2.7005� 10�3 2.6925� 10�3 2.6416� 10�3

9.00 2.8580� 10�3 2.8557� 10�3 2.8470� 10�3 2.7913� 10�3

Table 9

Example parabolic shell static solutions for uf (s) at y ¼ 0 for n ¼ 0, 1, 2, 4, 6, and 8 by ordinary finite difference method

s (in) uf (s) (in)

Constant nodal point spacings (in)

Ds ¼ 0.1610 in Ds ¼ 0.3220 in Ds ¼ 0.6440 in

0.000 �7.3223� 10�15 2.6553� 10�15 2.6082� 10�15

2.576 3.8135� 10�3 3.8113� 10�3 3.8036� 10�3

5.152 5.6284� 10�3 5.6288� 10�3 5.6304� 10�3

7.728 5.7531� 10�3 5.7548� 10�3 5.7616� 10�3

10.304 4.5612� 10�3 4.5624� 10�3 4.5673� 10�3

12.880 2.3871� 10�3 2.3873� 10�3 2.3886� 10�3

15.456 �4.7450� 10�4 �4.7479� 10�4 �4.7554� 10�4

18.032 �3.7751� 10�3 �3.7754� 10�3 �3.7768� 10�3

20.608 �7.3308� 10�3 �7.3311� 10�3 �7.3330� 10�3

23.184 �1.1023� 10�2 �1.1023� 10�2 �1.1027� 10�2
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found by using the ordinary finite difference representations of Refs. [23,24] are shown for uf(s) for
Ds ¼ 0.1610, 0.3220, and 0.6440 in in Table 9. Solutions at y ¼ 0 for the static loading case as obtained by
using the spatial derivative representations of Ref. [28] and Section 3 of this article are shown for uf(s) for the
same three values of Ds in Table 10. Solutions at y ¼ 0 for the dynamic loading case as found by use
of the ordinary spatial finite difference representations of Refs. [23,24] are shown in Table 11 for
uf(s, t ¼ 0.720� 10�2 s) for three different combinations of Ds and Dt as given in Table 11. Dynamic loading
case solutions at y ¼ 0 as found by using the high-order finite difference representations of Ref. [28] are shown
in Table 12 for uf(s, t ¼ 0.720� 10�2 s) for the same three different combinations of Ds and Dt as shown in
Table 12.

It is noted that for the dynamic solutions for the parabolic shell of Fig. 6 as shown in Table 11 for the
ordinary spatial finite difference representations of Refs. [23,24] and as shown in Table 12 for the high-order
spatial finite difference representations of Ref. [28] the choices of Ds and Dt have been selected in each case so
that Dt is just below the maximum value of Dt which may be used with the chosen Ds to produce numerically
stable solutions. This results in a higher truncation error for the larger values used for Dt in conjunction with
the chosen Ds than the error obtained for the smaller values of Dt. To show the effects of the magnitude of Dt

used for dynamic solutions for the parabolic shell of Fig. 6, solutions will be found with the use of
Dt ¼ 0.30� 10�6 s in conjunction with all values used for Ds in obtaining these dynamic solutions. Solutions at
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Table 10

Example parabolic shell static solutions for uf (s) at y ¼ 0 for n ¼ 0, 1, 2, 4, 6, and 8 by high-order finite difference method

s (in) uf (s) (in)

Constant nodal point spacings

Ds ¼ 0.1610 in Ds ¼ 0.3220 in Ds ¼ 0.6440 in

0.000 8.2919� 10�15 7.8303� 10�15 2.2263� 10�16

2.576 3.8142� 10�3 3.8142� 10�3 3.8147� 10�3

5.152 5.6283� 10�3 5.6283� 10�3 5.6288� 10�3

7.728 5.7525� 10�3 5.7526� 10�3 5.7531� 10�3

10.304 4.5608� 10�3 4.5609� 10�3 4.5613� 10�3

12.880 2.3871� 10�3 2.3873� 10�3 2.3878� 10�3

15.456 �4.7428� 10�4 �4.7404� 10�4 �4.7325� 10�4

18.032 �3.7748� 10�3 �3.7745� 10�3 �3.7734� 10�3

20.608 �7.3305� 10�3 �7.3301� 10�3 �7.3287� 10�3

23.184 �1.1022� 10�2 �1.1022� 10�2 �1.1020� 10�2

Table 11

Example parabolic shell dynamic solutions for uf (s, t ¼ 0.720� 10�6 s) at y ¼ 0 for n ¼ 0, 1, 2, 4, 6, and 8 by ordinary finite difference

method with Dt just below the stability limit

s (in) uf (s, t ¼ 0.720� 10�6 s) (in)

Constant nodal point spacings

Ds ¼ 0.1610 in, Dt ¼ 0.60� 10�6 s Ds ¼ 0.3220 in, Dt ¼ 1.20� 10�6 s Ds ¼ 0.6440 in, Dt ¼ 2.40� 10�6 s

0.000 0.0000 0.0000 0.0000

2.576 5.5857� 10�3 5.5798� 10�3 5.4869� 10�3

5.152 8.7497� 10�3 8.7236� 10�3 8.4981� 10�3

7.728 9.3193� 10�3 9.2724� 10�3 8.9791� 10�3

10.304 7.6321� 10�3 7.5457� 10�3 7.1306� 10�3

12.880 4.1010� 10�3 3.9758� 10�3 3.4235� 10�3

15.456 �8.4112� 10�4 �1.0081� 10�3 �1.7178� 10�3

18.032 �6.7299� 10�3 �6.9055� 10�3 �7.6296� 10�3

20.608 �1.3046� 10�2 �1.3198� 10�2 �1.3845� 10�2

23.184 �1.9279� 10�2 �1.9392� 10�2 �1.9899� 10�2

Table 12

Example parabolic shell dynamic solutions for uf (s, t ¼ 0.720� 10�6 s) at y ¼ 0 for n ¼ 0, 1, 2, 4, 6, and 8 by high-order finite difference

method with Dt just below the stability limit

s (in) uf (s, t ¼ 0.720� 10�6 s) (in)

Constant nodal point spacings

Ds ¼ 0.1610 in, Dt ¼ 0.60� 10�6 s Ds ¼ 0.3220 in, Dt ¼ 1.20� 10�6 s Ds ¼ 0.6440 in, Dt ¼ 2.40� 10�6 s

0.000 0.0000 0.0000 0.0000

2.576 5.5475� 10�3 5.5174� 10�3 5.4593� 10�3

5.152 8.6932� 10�3 8.6464� 10�3 8.5443� 10�3

7.728 9.2711� 10�3 9.2238� 10�3 9.1132� 10�3

10.304 7.6052� 10�3 7.5683� 10�3 7.4828� 10�3

12.880 4.1078� 10�3 4.0902� 10�3 4.0499� 10�3

15.456 �7.8499� 10�4 �7.7173� 10�4 �7.4476� 10�4

18.032 �6.6283� 10�3 �6.5752� 10�3 �6.4575� 10�3

20.608 �1.2911� 10�2 �1.2816� 10�2 �1.2596� 10�2

23.184 �1.9101� 10�2 �1.8948� 10�2 �1.8604� 10�2
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Table 13

Example parabolic shell dynamic solutions for uf (s, t ¼ 0.720� 10�6 s) at y ¼ 0 for n ¼ 0, 1, 2, 4, 6, and 8 by ordinary finite difference

method with Dt ¼ 0.30� 10�6 s

s (in) uf (s, t ¼ 0.720� 10�6 s) (in)

Constant nodal point spacings

Ds ¼ 0.1610 in, Dt ¼ 0.30� 10�6 s Ds ¼ 0.3220 in, Dt ¼ 0.30� 10�6 s Ds ¼ 0.6440 in, Dt ¼ 0.30� 10�6 s

0.000 0.0000 0.0000 0.0000

2.576 5.5861� 10�3 5.5808� 10�3 5.4840� 10�3

5.152 8.7503� 10�3 8.7252� 10�3 8.4841� 10�3

7.728 9.3196� 10�3 9.2727� 10�3 8.9521� 10�3

10.304 7.6322� 10�3 7.5439� 10�3 7.0913� 10�3

12.880 4.1008� 10�3 3.9726� 10�3 3.3760� 10�3

15.456 �8.4154� 10�4 �1.1129� 10�3 �1.7742� 10�3

18.032 �6.7307� 10�3 �6.9123� 10�3 �7.6933� 10�3

20.608 �1.3048� 10�2 �1.3207� 10�2 �1.3914� 10�2

23.184 �1.9280� 10�2 �1.9399� 10�2 �1.9961� 10�2

Table 14

Example parabolic shell dynamic solutions for uf (s, t ¼ 0.720� 10�6 s) at y ¼ 0 for n ¼ 0, 1, 2, 4, 6, and 8 by high-order finite difference

method with Dt ¼ 0.30� 10�6 s

s (in) uf (s, t ¼ 0.720� 10�6 s) (in)

Constant nodal point spacings

Ds ¼ 0.1610 in, Dt ¼ 0.30� 10�6 s Ds ¼ 0.3220 in, Dt ¼ 0.30� 10�6 s Ds ¼ 0.6440 in, Dt ¼ 0.30� 10�6 s

0.000 0.0000 0.0000 0.0000

2.576 5.5476� 10�3 5.5188� 10�3 5.4676� 10�3

5.152 8.6935� 10�3 8.6490� 10�3 8.5591� 10�3

7.728 9.2713� 10�3 9.2257� 10�3 9.1255� 10�3

10.304 7.6051� 10�3 7.5686� 10�3 7.4890� 10�3

12.880 4.1075� 10�3 4.0885� 10�3 4.0482� 10�3

15.456 �7.8558� 10�4 �7.7519� 10�4 �7.5563� 10�4

18.032 �6.6293� 10�3 �6.5805� 10�3 �6.4793� 10�3

20.608 �1.2913� 10�2 �1.2823� 10�2 �1.2628� 10�2

23.184 �1.9102� 10�2 �1.8956� 10�2 �1.8633� 10�2
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y ¼ 0 for the dynamic loading case as found with the ordinary finite difference representations of Refs. [23,24]
are given in Table 13 for uf(s, t ¼ 0.720� 10�2 s) for three different combinations of Ds and Dt as given in
Table 13. Dynamic loading case solutions at y ¼ 0 as found by using the high-order finite difference
representations of Ref. [28] are shown in Table 14 for uf(s, t ¼ 0.720� 10�2 s) for the same three different
combinations of Ds and Dt as shown in Table 14.

Comparison of the static solution results given in Table 5 for the example cylindrical shell of Fig. 5 as found
by the ordinary spatial finite difference representation of derivatives [23,24] with the results given in Table 6 as
found by the high-order spatial finite difference representation of derivatives [28] shows that the ordinary finite
difference results are converging toward the high-order finite difference results as the increment Ds is reduced.
Thus, for the small values of Ds, the results are closely identical. It is seen also that, for the high-order spatial
finite difference representation of derivatives, the static solution results are quite close for all values of Ds.
Similar observations are evident when the solutions for the parabolic shell of Fig. 6 as given in Table 9 for the
ordinary spatial finite difference representations [23,24] are compared with the solutions given in Table 10 for
the high-order spatial finite difference representations.

It may be seen by comparing the dynamic solutions in Table 7 for the example cylindrical shell of Fig. 5 as
found by the ordinary spatial finite difference representation of derivatives [23,24] with the results given in
Table 8 as found by the high-order finite difference representation of derivatives [28] that the results are very
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close to identical for the choice of Ds ¼ 0.0625 in and Dt ¼ 0.095� 10�6 s. As the values of Ds and Dt are both
increased, the degree of agreement between the results given in Tables 7 and 8 is diminished as a result of the
truncation error of O[(Ds)2, (Dt)2] for the ordinary spatial finite difference representations and the truncation
error of O[(Ds)4, (Dt)2] for the high-order spatial finite difference representations. Similar observations may be
made when the solutions for the parabolic shell of Fig. 6 given in Table 11 for the ordinary spatial finite
difference representations [23,24] are compared with solutions in Table 12 for the high-order spatial finite
difference representations [28].

By comparing the dynamic solutions for the parabolic shell of Fig. 6 as shown in Tables 11 and 13 for the
ordinary spatial finite difference representations, it is seen that the results obtained by using Ds ¼ 0.1610 in
and Dt ¼ 0.60� 10�6 s in Table 11 are in very good agreement with the results found by using Ds ¼ 0.1610 in
and Dt ¼ 0.30� 10�6 s in Table 13. This good agreement diminishes as the values used for Ds are increased.
Similar observations pertain when comparisons are made between the dynamic solutions given in Tables 12
and 14 for the high-order spatial finite difference representations.

In comparing the static solutions given in Tables 5, 6, 9, and 10 with the dynamic solutions shown in Tables
7, 8, 11, 12, 13, and 14, it is seen that significantly better agreement between solutions by the ordinary and
high-order spatial finite difference representations is obtained for static solutions than for dynamic solutions.
Although the static solutions have a truncation error of O[(Ds)2)] for the ordinary spatial finite difference
representations [23,24] and a truncation error of O[(Ds)4)] for the high-order spatial finite difference
representations [28], both solutions, in the absence of significant roundoff error, converge to the exact solution
as Ds is sufficiently reduced. Furthermore, the static solutions are accomplished in only one time increment of
computation. Static solutions found by the high-order spatial finite difference representations are closer to the
exact solutions than solutions by the ordinary spatial finite difference representations for any Ds, but they will
agree for a sufficiently small value of Ds. In the case of dynamic solutions, there is a consistent truncation error
of O[(Ds)4, (Dt)2] for the high-order representations [28], while the consistent truncation error for the ordinary
representations [23,24] is of O[(Ds)2, (Dt)2]. Essentially, there exist truncation errors for the dynamic solutions
case, which do not exist for the static case. Additionally, for the dynamic case, there exist roundoff and
truncation errors from a multiplicity of solution times as opposed to the one-time solution for the static case.
Thus, it is not expected that agreement between dynamic solutions based upon ordinary and high-order
representations of spatial derivatives will be as good as agreement between static solutions by the ordinary and
high-order spatial finite difference representations.

7. Conclusions

The purpose of Ref. [28] was to incorporate into the development of Ref. [22] provisions to determine by
eigenvalue analysis of the explicit coefficient matrices stability (or instability) of numerical solutions based
upon a high-order constant nodal point spacing for spatial derivatives. A second objective was to compare the
numerical stability requirements based upon the high-order constant nodal point spacing finite difference
representation of spatial derivatives [28] with the requirements based upon an ordinary spatial derivative
representation of spatial derivatives [23,24] for typical shells. A third objective was to compare the
convergence and accuracy of solutions together with the stability requirements for the ordinary and high-order
spatial finite difference representations for these typical shells.

It may be seen by examination of the stability limits given in Tables 1 and 2 (found by eigenvalue analyses of
the explicit coefficient matrices) for a high-order spatial finite difference representation of the derivatives that
there exist combined choices of the time increment Dt and the spatial increment Ds for which numerical
solutions are stable and other combinations of these increments for which numerical solutions will be unstable.
It is further seen that for given values of the spatial increment Ds the maximum time increment Dt for stable
solutions for this high-order spatial finite difference representation [28] is less than the maximum time
increment Dt which may be used to obtain stable solutions for an ordinary finite difference representation of
spatial derivatives [23,24].

The results and observations for both static and dynamic solutions for typical shells presented in Section 6
demonstrate that larger values of both the time increment Dt and the spatial increment Ds may be used with
the high-order spatial finite difference representation of spatial derivatives than with ordinary spatial finite
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difference representations [23,24] to obtain stable solutions and given accuracy of solutions. It is noted also
that closer convergence to the exact solution for either spatial finite difference representation may, in the
absence of significant roundoff error, be obtained by sufficient reduction of the magnitude of the spatial
increment Ds and, for the dynamic case, the time increment Dt. Thus, with a sufficient reduction of the spatial
increment Ds and, for the dynamic case, the time increment Dt, solutions for the high-order and the ordinary
spatial finite difference representations may be made to agree as closely as desired.
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